
On the conditional symmetries of Levi and Winternitz

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 3643

(http://iopscience.iop.org/0305-4470/23/15/033)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 23 (1990) 3643-3645. Printed in the UK 

COMMENT 

On the conditional symmetries of Levi and Winternitz 
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Physique Theorique, Ecole Polytechnique, 91 128 Palaiseau, France 

Received 9 April 1990 

Abstract. It is pointed out that the 'conditional symmetries' of Levi and Winternitz, and 
the 'non-classical method' first introduced by Bluman and Cole, have a natural group 
theoretical setting. This corresponds to classifying solutions to a PDES according to their 
full symmetry and not just according to their symmetries which are also symmetries of the 
PDE. 

Recently, Levi and Winternitz [ 11 pointed out the relevance of the 'non-classical 
method', introduced by Bluman and Cole [2] (see also [3,4]), in the quest of solutions 
to PDES by means of reductions to an ODE [5,6]. 

We would like to shortly look at their procedure, which introduces the useful 
concept of conditional symmetries, in a way which we think clarifies it further. We 
assume the reader to know of [ l ]  and to be familiar with the general concepts of 
symmetry of differential equations and their solutions, see e.g. [5] to which we conform 
also for notation. 

Given a differential equation 

A(x, U"')) = 0 (1) 

M = X x U  (2) 

where X E Rq is the space of independent variables and U E RP that of dependent 
ones, and U'") the nth prolongation of U, so that 

with base space M, 

A :  M ' " ) + . R '  (3) 

(s  = 1 for a scalar equation; s > 1 for a vector one, i.e. a system of scalar equations), 
we can look for its symmetry algebra %A, with nth prolongation Cer'. 

This is the algebra of vector fields on M, which we write as 

4 P 

i = l  h = l  
v = t i a x ' +  C 4ha,ll 

or shortly 

v=ta,++a, 
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such that the solution manifold SA of A, 

S,={(x, u("))EM(")/A(x,  U ( " ' ) = O ) C  M'"' ( 6 )  

( 7 )  

is invariant under them, or properly speaking under their nth prolongation: 

%A = { v  E Diff(M)/u'"': SA+ TS,} c Diff(M). 

This condition is also written 

(U'") * A ) \ , , = O  

but we will keep to definition (7); this implicitly identifies, for symmetry purposes, a 
differential equation ( 1 )  and its solution manifold (6). 

A vector field v E Diff(M) also induces an action on functions f: X -$ U (see e.g. 
[5, section 2.2]), with infinitesimal action 

and generator, with obvious notation 

v ( ~ )  = 4"ap - ~ ' a x I .  

%f = { U E Diff(M)/ u ( ~ ~  f = 0) c Diff( M )  

(10) 

(11) 

We can define the symmetry (or isotropy) algebra of a function f: X + U as 

(obviously U E %f also implies uY) .f(")= 0, with f("' the nth prolongation o f f ) .  
If we denote %= Diff(M) and 

%;= %An gf (12) 
we have the subgroups diagram 

Now, the classical reduction method consists in this: given %A, we consider its 
subalgebras gi = %,, and for each of these we make the ansatz %) c 3:; with this the 
equation (1) reduces to a simpler one, possibly an ODE. 

Actually, one does not consider all the (in general, infinitely many) %!, but a 
representative for each stratum [7,8] in the stratification of 9, by %r', the prolongation 
of %A (see e.g. [5, section 3.31, where this enters through the concept of an 'optimal 
system' of subgroups), where 

Y A = ( f : X +  U / A ( x , f ' " ' ) = O }  (14) 
i.e. YA is the (functional) space of solutions to (1). 

distinct solutions which are symmetry related to it) are obtained as 
Once such a solution U = f ( x ) ;  3, G %f is determined, symmetry copies of it (i.e. 

f g ( x )  = g * f ( x )  Vk- E G* (15) 
where Ga is the connected Lie group generated by %,, ; actually in (1 5 )  it suffices to 
consider 

g E G A P ?  (16) 
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as g E G$ (the group generated by 3;') acts on f as the identity; symmetry-related 
solutions will be in one-to-one correspondence with elements of GA/ Gj. 

Now, it is clear that we could as well stratify 9, by considering 9' tout court and 
not just 3;; this means that we can classify solutions to A = 0 according to their full 
symmetry under subgroups of 3 = Diff ( M )  and not just under subgroups of 3, c 3. 

The reduction procedure, once %/ is chosen, is then as before: the ansatz 3' = 3! c 3 
partially determines the form o f f  (its graph T t  = ( x , f ( x ) )  must be the union of 3' 
invariants in M ) ,  and we are left with an equation simpler than (l), possibly an ODE, 

to solve. 
Notice that, since 3 : ~  gf, this reduction is equally or more effective than the one 

based on 9;; on the other hand, in order to obtain in this way all the solutions with 
a given G f ,  we should consider (representatives of the strata for) all the gf such that 
$= gfn 9,. 

The classical reduction method corresponds to classification of solutions 
(stratification of YA) according to %$; the non-classical reduction method corresponds 
to classification (stratification) according to 9f. 

It is clear that the 'conditional symmetries' correspond to generators z1 in 3cfond, 

q O " d =  3 f l  3 4  / a  (17)  

It is also obvious that they do not in general form an algebra; this is in fact the 
case if and only if %$ is an ideal in 3f, 

[ %/, 33 E 3; (18) 

G$ Gf (19) 

Notice that, in view of (lo),  the condition to have v E gf, U given by ( 5 ) ,  can just 

or equivalently if G: is a normal subgroup of Gf, 

while in general cases 3Tnd is a coset space. 

be written as a differential equation in M " ) ,  i.e. 

A ( s ) ( ~ ,  ~ ( l ) )  E tu ,  - 4 = 0 (20) 
which is the 'side condition', or auxiliary equation (see (2.4) of [l]), of Levi and 
Winternitz. 
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